Instructions for Experiment on the Two-Axis Diffractometer of BL04B2 for Disordered Materials.

6 June, 2016

by Koji Ohara, Natalia Mueller, and Bagautdin Bagautdinov

Sample preparation

- 1. Put the empty silica capillary tube ($\phi = 1 \text{ mm} 2\text{mm}$) into the sample holder.
- 2. Use the folded powder paper to transfer the powder samples into the silica capillary carefully.
- 3. Use a plastic tube to secure the capillary, then shake up and down to minimize hollow space between powder grains.
- 4. Put a small white ball into the capillary and seal the top of the silica capillary tubes.

Note:

- Mark each capillary with the sample's name/reference number.
- Add an empty capillary next to the capillary with samples. Detected signal will be used for background substraction.
- Diameter of capillary and respective sample holder in use are dependent on the powder sample grain size.

Powder sample inside capillary inserted into sample holder

Sample loading

- Powder samples in capillary inserted into sample holder used for measurements. If other than powder samples are measured, use respective sample holder. Ask beam-line scientist for help if needed.
- 2. Fix sample holder onto the positioning stage inside vacuum chamber on the diffractometer. Optimal configuration for sample mounting is $2\theta = 45^{\circ}$ for detector and sample X=0 for sample holder; diffractometer operation details are presented below.

Be careful while in hutch: don't touch any detectors or respective cables!

Sample positioning stage inside vacuum chamber

Close-up of sample holder with capillaries fixed on the sample positioning stage

- 3. Close and fix the top cover of the vacuum chamber, switch-on vacuum pump and open vacuum valve to pump down chamber.
 - 4. Exit the experimental hutch, push the EXIT bottom, close the hutch door by pushing red button (follow audible alarm signal), wait until the door interlock system is activated and turn key to enable position. On the touch screen push "local only" button, glowing red "DSS optics beam on".

Data Collection: X-ray exposure

Collect data using station control program <bl04b22.py>. The icon can be found on the desktop of experimental PC.

1. Launch the control software <bl04B22.py>

	BL	04B2 Station Cor	trol					
File Config Job Slit	Scan							
OSS Open		DSS	DSS Open/Close					
O DSS Close								
TC2, ISX, RS1&2 Slits	Diffractometer	Theta-2Theta Sca	an Set Slit	Sample info.	Scan Status			
width	4mm	0.2		move	tc2 width			
height	2.5mm							
		0.5		move	tc2 height			
					1			
ISX	1.7mm							
RS1 Width	0.8mm							
RS2 Width	0.65mm							

In the TC2, ISX, RSI1&2 Slits tab check the current values of the TC2 and ISX slits. To protect AMPTEK detectors from strong X-ray flux, set the slit sizes to the values of: TC2width = 0.1, TC2height = 0.1, and ISX = 0.05.

	BLO	04B2 Station Con	rol		E) o x	
File Config Job Slit	Scan						
 DSS Open DSS Close 	S Open DSS Open/Close						
TC2, ISX, RS1&2 Slits	Diffractometer	Theta-2Theta Sca	n Set Slit	Sample info.	Scan Status		
TwoTheta	9.900000degr	ree		move	twotheta		
Theta	0.000000degr	ree		move	theta		
Sample-X	10.600000mm	n		move	samplex		
Diffr X	0.000000mm			mo	ve X		
Diffr Y	2.300000mm			mo	ve Y		
Diffr Z	-3.000000mm			mov	ve Z		
Update	STOP						

Select the **Diffractometer** tab and move TwoTheta to the ~10°

- DSS Open/Close: beam on/off in the experimental hutch Press the DSS Open/Close button to be sure the Exp DSS open. The indicator DSS open on the control panel and glowing red BEAM ON button of the panel next to the experimental hutch door indicate the experimental hutch beam on state.
- In Diffractometer tab find preliminary positions for sample: sample X and diff. Z, (on screen the beam position marked in red)
- 4. Perform QUICK scan in the Theta-2Theta Scan tab. A default range 2θ =0.3-10°, step 0.1, dwell 100 msec click the start QUICK scan button and find 2theta position of the highest peak. Use for crystalline materials: tc2w=0.4, tc2h=0.2, isx=0.2 for amorphous & nano ones: tc2w=2, tc2h=2.5, isx=1.0 For empty quartz-capillary use 2θ = 2.8° @ 61.4 keV 2θ = 4.55° @ 37.8 keV

	BLO	4B2 Station Contro	ol					
File Config Job Slit	Scan							
DSS Open DSS Close								
TC2, ISX, RS1&2 Slits	Diffractometer	Theta-2Theta Scan	Set Slit	Sample info.	Scan Status			
Two Theta Min	0.3		[Degree				
Two Theta Max	10		[Degree				
Two Theta Step	0.1					1		
Time	100							
start QUICK scan								
start STEP scan	thet	ta-twotheta						

For accurate position (in case of crystalline samples) perform **start STEP scan** around the peak position (step 0.01, time 1000 msec).

- Confirm and optimize sample X position with scan around estimated position in range about twice the diameter of capillary (Δ=2φ),
 Step scan= 0.1, dwell= 1 sec, channel= 2
- 6. Move 2θ to 45° and fine-tune the sample Y position by scanning from -4 to
 4, step=0.2, dwell=1 sec, channel= 2
- 7. Return to the 2θ peak position of the first (highest XRD peak, e.g ~0.3-0.6°) and optimize the peak intensity by altering slits size. For this tap to the TC2, ISX, RS1&2 Slits tab and change gradually slits size to get total count ~10, 000 (optimal) in 1 sec.
 Check the total count on the Amptek DppMCA screen monitor.
 Use A and F3 on the keyboard to display X-ray scattering in 1 sec.
 During optimization of the TC2 width, TC2 high, ICX width sizes hold relation: TC2 width : ICX width = 2 : 1
 The upper value (fully open) for tc2h is 2.5 mm, and for tc2w is 4.0 mm

(As an illustration: for crystalline tc2w=0.4, tc2h=0.2, isx=0.2 for amorphous tc2w=2, tc2h=2.5, isx=1)

AMPTEK detector CPS (abt. 10K)

- 8. If needed optimize sample measurement conditions: scan Z, scan sample X, scan Y
- Place the experimental details into Sample info

Tap the **Sample info** tab, press the **job details** button to <u>double-check</u> the set values for the job file in the stand-up window

BL04B2 Station Control							
File Config Job Slit Scan							
• DSS Open	DSS Op	en/Close					
O DSS Close							
TC2, ISX, RS1&2 Slits Diffractometer	Theta-2Theta Scan	Set Slit Sa	ample info.	Scan Status			
Signal and Background run number	ob details						
Signal Background							
2							
3							
Atomic Number and the number of each Element Omic Numb	n species Ratio				< =		
3					~		
Density of Sample (g/cm^3)							
Flat Plate CThickness or Diameter [cm]							
Polarization factor 0.072							
Start/Stop Job							

Data file name -- Sample X --, Sample w 0 (fixed), X 0 (fixed), Y --, Z --, Scanning mode 2Θ only or Θ/2Θ tc2w --, tc2h --, isx --, set 1 (fixed), start - (usually 0.3), end -- (usually 17.001), interval --, dwell time --

			fram	e_3				
File Edit								
lob name NoName0	L .	1						
Over all measure tim	e: 71810.0sec, (1						
Run 2 Run 3 Ru	n 4 Run 5 Rur	6 Run 7	Run 8 Run 9	9				
RUN 1 : Data file na	me s22	Ch	ose file Sar	nple x -19.2		Scanning	mode : 2Th	eta only 🛛 😂
xo	Y 1.6		Z -3					
tc2	w tc2h	isx	set) start	end	interval	dwell time	total time
1 4	2.5	1.7	1	0.3	17	0.1	60	10020.0sec
2								0sec
3								0sec
4								0sec
5								0sec
< <		·		I		·		>

Here **tc2w** is TC2 slit width, **tc2h** is TC2 slit height, and **isx** is incident slit width.

Usually, an interval (scan step) of ~0.1 for local and intermediate order amorphous or nano-materials and an interval of ~0.01 - 0.05 for long order crystalline samples are applicable.

In the current setting of horizontal two-axis diffractometer the tree detectors are away by 16° , the angular range of the first detector and the second one is set to a value that partially overlapped. At value 2Θ end of 17° the first and second detectors overlap $16-17^{\circ}$, while the second and third ones overlap at $32-33^{\circ}$.

Before the job start check the values, modify not appropriate one and after revision be sure to run the File \rightarrow Save \rightarrow Replace guideline, notably the latest Save set secured in the job file.

- 10. After the set values have been confirmed press the Start/Stop job button and the measurements are started. The movement of the indicator under the button points to job in process, at scans completion it stopped. The job status (current 2Θ, X-sample, Y, Z, and slits positions) can be monitored by pressing the Scan Status tab.
- 11. At scan-job completion, open the experimental hutch: DSS beam off, turn key in disable position, door open (green button). Open the leak valve of the vacuum camera and then open its top and take-out the sample changer.

Readout and plotting data

During the measurements the diffraction profile appear on the plot window. Plot and comparison of the acquired data (saved files) can be performed using the <gnuplot> program. Typing gnuplot on Linux terminal launch the plot software.

```
      ■
      bladmin@bl04cst: ~

      File Edit View Terminal Tabs Help

      bladmin@bl04cst:~$ gnuplot

      G N U P L 0 T

      Version 4.2 patchlevel 2

      last modified 31 Aug 2007

      System: Linux 2.6.26-2-amd64

      Copyright (C) 1986 - 1993, 1998, 2004, 2007

      Thomas Williams, Colin Kelley and many others

      Type `help` to access the on-line reference manual.

      The gnuplot FAQ is available from http://www.gnuplot.info/faq/

      Send bug reports and suggestions to <http://sourceforge.net/projects/gnu</td>

      plot>

      Terminal type set to 'wxt'

      gnuplot>
```

By using Linux commands <ls> (list all directories and files inside the current directory) and <cd> (change to any directory) move to the directory with acquired and saved files.

```
<u>File Edit View T</u>erminal Ta<u>b</u>s <u>H</u>elp
        GNUPLOT
        Version 4.2 patchlevel 2
        last modified 31 Aug 2007
        System: Linux 2.6.26-2-amd64
        Copyright (C) 1986 - 1993, 1998, 2004, 2007
        Thomas Williams, Colin Kelley and many others
        Type `help` to access the on-line reference manual.
        The gnuplot FAQ is available from http://www.gnuplot.info/fag/
        Send bug reports and suggestions to <http://sourceforge.net/projects/gnu
plot>
Terminal type set to 'wxt'
gnuplot> call "3lplot.plt" "s21-1.dat"
         Cannot open call file '3lplot.plt'
         util.c: No such file or directory
gnuplot> cd '/home/bladmin/data/2014a/may/kohara/'
gnuplot> call "3lplot.plt" "s21-1.dat"
gnuplot>
```

By using the <call> command load the p.plt followed by the input data file names that you want to plot.

gnuplot> call "p.plt" "name1.dat" "name2.dat" "name3.dat"

For comparison up to three files can be entered and superpose. Since the data of three detectors per file are stored, it is plotted in three angular regions as shown bellow:

The plot of each file has its unique color, but be aware that the color of file and its legend line color may not be the same.

Copying & processing data: Files saved in "name.dat" format and can be copied for further processing.

Useful info about the beam-line

Things you need to know:

- 37.8 keV or 0.328 Å (Si 111) 0.10 22 (Q range, Q=4πsinθ/λ)
- 61.4 keV or 0.202 Å (Si 220) 0.16 36 (Q range)
 - 0.10-30 (Q range)
- 113.3 kEV or 0.109 Å (Si 333) 0.30 40 (Q range)
- Photon flux @ 37.8 keV Flat: 2.2×10^{10} (photons/sec/1x 1mm² at 100mA) Bent: 7.1×10^{11} @ 61.4 keV Flat: 3.4×10^{9} Bent 9.2×10^{10} At incident beam size: 0.2 (H) x 4 (W) mm²: Beam size @ 37.8 keV: 0.220 mm @ 61.4 keV: 0.375 mm Energy resolution $\Delta E/E = 10^{-3}$